
AD-A260 7131111 li ii 1l1ll11 lll~1111li lqii

NASA Contractor Report 189729

ICASE Report No. 92-60 DTICICASE ,

PARALLEL ALGORITHMS FOR SIMULATING
CONTINUOUS TIME MARKOV CHAINS

David M. Nicol
Philip Heidelberger -

Approved tm oiip2ec tel-ecal

NASA Contract Nos. NASI-18605 and NASI-19480
November 1992

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

NASA 93-01345
National Aeronautics and II
Space Administration 111,
Langley Research Center
Hampton, Virginia 23665-5225

98 ~ "'.7

DTIC QUJALFY SPZCTZD 5

Parallel Algorithms for Simulating Continuous Time

Markov Chains

David M. Nicol * -

Department of Computer Science l a"
The College of William and Mary uum0WM694 F] 1

Williamsburg, Virginia 23185 Jttif __at___

Philip Heidelberger By

IBM Thomas J. Watson Research Center, Hawthorne

P.O. Box 704 Availability Codes

Yorktown Heights, New York 10598 7is 4 i al
Dist !Special

Abstract

We have previously shown that the mathematical technique of uniformization can serve as
the basis of synchronization for the parallel simulation of continuous-time Markov chains. This
paper reviews the basic method and compares five different methods based on uniformization,
evaluating their strengths and weaknesses as a function of problem characteristics. The methods
vary in their use of optimism, logical aggregation, communication management, and adaptivity.
Performance evaluation is conducted on the Intel Touchstone Delta multiprocessor, using up to
256 processors.

*Research was supported in part by the National Aeronautics and Space Administration under NASA Contract
Nos. NASI-18605 and NASI-19480 while the author was in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681. This work was initiated
while David Nicol was a visiting scientist at the IBM T.J. Watson Research Center. Partial support was provided by
NSF Grants ASC 8819373 and CCR-9201195, and NASA Grants NAG-1-1060 and NAG-1-995.

1 Introduction

Discrete-event simulation is an invaluable tool for the design and analysis of complex systems such

as factories, transportation networks, computer systems, and communication networks. Large scale

simulations require a long time to execute, and because of this many researchers are interested in

parallelizing their execution. One of the key issues is synchronization between processors, as the

synchronization demands are highly variable, depending dynamically on the simulation model's

state. Recommended introductory surveys on the topic are found in [2] and [11].
In a series of previous papers [5, 9, 10] we developed the notion of using uniformization as the

basis for synchronization in parallel discrete-event simulation of continuous-time Markov chains

(CTMCs). CTMC models are important, appearing frequently in the study of computer and com-

munication systems. Uniformization exploits the mathematical structure of these models, making

it possible to pre-compute instants in simulation time where Logical Processes (LPs) ought to syn-
chronize. The decision whether an LP actually influences another at one of these instants is left

until run-time. Conceptually, a simulation is performed in three phases. In the first phase, the

simulation model is partitioned into LPs, which are mapped to processors. All simulation activity

associated with an LP is assumed to be performed by its assigned processor. In the second phase

one randomly generates synchronization points; in the third phase one simulates a mathemati-

cally correct sample path through those points. We call the general method PUCS, for Parallel

Uniformized Continuous-time Simulation.
We have developed five different variations of PUCS that differ in their treatment of LP aggre-

gation, communication management, use of optimism, and generation of communication schedules:

* Conservative Aggregated PUCS (CA-PUCS),

* Conservative Partitioned PUCS (CP-PUCS),

* Optimistic PUCS (Opt-PUCS),

e Adaptive Conservative Aggregated PUCS (ACA-PUCS).

* Adaptive Conservative Partitioned PUCS (ACP-PUCS).

CA-PUCS uses no optimism, and treats the entire submodel assigned to a processor as a single LP.

Synchronization between LPs is thus equivalent to synchronization between processors. CP-PUCS

also eschews optimism, but permits a processor's submodel to be viewed as a collection of LPs that

are resident on the same processor. Opt-PUCS also allows multiple LPs per processor, synchro-

nizes optimistically, and uses techniques to reduce state-saving and perform smart on-processor

scheduling; these techniques are made possible by the basis in uniformization. ACA-PUCS is like

CA-PUCS, except that it attempts to reduce some overheads associated with synchronization, and
requires that one know less about the simulation model. Similarly, ACP-PUCS is an adaptive

version of CP-PUCS.

Each of these methods has strengths and weaknesses that are alternatively revealed by prob-

lem characteristics. The object of this paper is to give an overview of uniformization-based

I

synchronization, and empirically examine these different methods on the Intel Touchstone Delta

multiprocessor[7], using up to 256 processors.
The remainder of the paper is organized as follows. Section 2 gives an overview of direct

Markovian simulation, and uniformization. Section 3 introduces each method and its rationale.
Section 4 presents and analyzes our experimental results, and Section 5 gives our conclusions.

2 Uniformization-Based Synchronization

In this section we briefly describe the basic notions of direct Markovian simulation, and uniformiza-
tion. More rigorous and complete mathematical details can be found in [5]. Following the descrip-
tions we illustrate them concretely with an example.

Let us first review some basic elements of the theory of continuous time Markov chains. Read-
ers unfamiliar with CTMCs are encouraged to consult Ross [12] for a more complete and exact
introduction to the topic. A CTMC is a stochastic process {X(t)), where X(t) is the state of
the CTMC at time t. For the purposes of general description, X(t) is taken to be a nonnegative
integer; in practice it is often more natural to describe X(t) as a vector of integers, e.g., the vector
of queue lengths in a network. Upon entering a state s at time t, the CTMC remains in that state
for a random period of time called the holding time, which has an exponential distribution with
state-dependent rate A(s). This is also called the transition rate out of state s. At the end of the

holding time, the CTMC randomly changes state, jumping to some state s'. It is convenient to
think of this jump as choosing a winner among all possible jumps, in the following way. While
in state s the chain is attempting to make a transition to every other state reachable from s, si-
multaneously. It is as though there are a large number of stochastic processes-one for each state
distinct from s-that are all concurrently active. The transition rate for the process attempting to
jump to s' is some qs',; note that A(s) = 2•8{s,'s} qss,. Each of these processes has an exponentially
distributed holding time; the rate of s"s holding time is just qss'. We may imagine that each of
these holding times are randomly sampled at the point {X(t)} enters s. Now the time and nature
of {X(t)}'s transition out of s are defined by the process whose next transition time is least among
all possibilities. Thus, the probability that the exponential associated with a given state s' is least
among its peers is just Pss' = qss,/A(s); Pss, is also known as a transition probability.

Observe that we can also interpret a transition in terms of {X(t)} simultaneously attempting
jumps to one of a number of sets of states. For example, we might partition the state-space into
two sets A and B, and interpret transition as the competition between all transitions to states in
A, and all transitions to states in B. This interpretation will be particularly useful when A is the
set of transitions that do not affect other LPs, and B is the set of transition that do.

A direct simulation of a CTMC involves sampling holding times, and choosing transitions, as
follows. Upon entering state s, one advances time by sampling an exponential with rate A(s),
essentially simulating the duration of time the CTMC remains in state s. To choose a transition
it is not necessary to choose the least of a large number of exponenlials. It suffices to construct
the transition distribution by computing the rates q,,,, and then sampling from the distribution

2

{qss, / A(s)}.
Uniformization of a CTMC is a mathematical device (originally used to simplify numerical

solution [4]) designed so that every holding time is drawn from the same distribution. The basic
idea is to find a uniformization rate A.max such that for every state s, A(s) < A,,ax. All holding times
are sampled from the exponential distribution with rate Amax.- However, to mak, th, uniformized
chain stochastically identical to the original chain, we introduce transitions back to the same state.
In the uniformized chain, the probability of making a transition from s to s' (7 s) is qssi/A1 11 ax.
The probability of making a transition back to s is 1 - A(s)/Amax. Transitions of the latter form are
known as pseudo transitions, as they do not affect the state of the Markov chain. The mathematical
basis for uniformization is simply that a geometrically distributed sum (with mean l/p) of i.i.d.
exponential random variables (with mean I/y) is itself an exponential, with mean I/(plz). Whenever
the original chain in state s; its holding time is exponential with rate A(s). Now suppose the
uniformized chain (at rate Amax) enters state s; the number of pseudo transitions that occur before
actually leaving s is geometrically distributed with mean Amax/A(s), and the distribution of time
spent in s before leaving is that of a geometrically distributed sum of exponentials, each with mean
1/Ammax. The effective distribution of time the uniformized chain spends in state s is exponential
with mean 1/A(s), just as in the original chain.

Let us now apply these ideas to a specific example. Consider a type of queue that has K servers,
a Poisson source process with rate A, and a service distribution that is a probabilistic mixture of
exponentials: with probability pf the service time is exponential with a fast rate .tf, and with
complimentary probability the service time is exponential with a slow rate jsM, _ ,u. Now imagine
a queueing network with three such queues. We suppose that every departing job exits the system
with probability Pd; conditioned on not departing the system, the job rejoins the same queue with
probability p,, and otherwise joins either of the other queues with equal probability. The state of
one queue, say i, in this system can be described by a vector si = (Ni, Fi, Si), where Ni gives the
total number of jobs in residence at the queue, Fi gives the total number of fast jobs in service, and
Si gives the total number of slow jobs in service. In the absence of any job transfers from other
queues, the transition rate out of si is Ai(si) = A + Fil 1 + Sips. The state of the entire system is
the concatenation s = (s1,s2,s 3), with total transition rate A(s) = A,(sl) + A2(s2) + A3 (s3).

Under an ordinary direct simulation of the Markov chain, the system remains in a given state
s for an exponentially distributed period of time with rate A(s). After the holding time, the chain
makes one of several possible transitions, chosen randomly. Transition due to a source arrival
at queue i is chosen with probability A/A(s), while transition due to a fast (alt., slow) service
completion at queue i is chosen with probability ptfF 2/A(s) (alt., !sSi/A(s)). Following simulation
of the chosen transition and its effect on s, a new holding time is chosen based on the new state,
and the simulation process continues.

An alternative form of direct simulation is more closely related to how we do parallel simulation.
Let us now view the system as three interacting Markov chains, each one simulated directly. This
is equivalent to partitioning all transitions into three classes, grouping together all transitions that
are initiated at a common queue. We maintain a simulation clock ti for each queue i, reflecting

3

the end of the queue's current holding time. To select the next event to (1o in the system we
first select the queue i whose time ti is least (recall the interpretation of a transition in terms of

competing exponentials). We then directly simulate that queue, choosing a source arrival with
probability A/Ai(si), a fast job departure with probability Fi1lJ/A;(si), and a slow job departure
with probability Siji/Ai(si). If a job departure is chosen, then with probability Pd the job leaves

the system. If the job does not leave the system, then with probability p, the job rejoins the same

queue. Failing this, the job is routed to one of the other two queues, with equal probability. Queue
i now has a new state s'; its new next transition time is chosen by adding ti to an exponential
random variable with rate Ai(sý). Observe that if the event caused a job to be routed to queue j ý i,
then queue j has a new state s'. We compute a new next transition time for queue j by adding ti
(not tj!) to an exponential random variable with rate Aj/(s.). Also observe that if the event does
not route a job to another queue, then the distribution of the holding times of the other queues are
unaffected by the event, and, by the memoryless property of the exponential distribution, do not
need to be resampled prior to selecting the next event. They rould be resainlied, but the resulting
chain would be probabilistically identical to the one where we do not.

This description suggests that one might directly simulate each queue on a separate processor,

provided one can accommodate the instances when jobs flow between queues. It is convenient
to view the behavior of a given queue as the superposition of an internal stream of events, and

a set of external streams. The internal stream is comprised of all events that do not directly
affect the state of another queue: Poisson source arrivals, departures that leave the system, and
departures that return immediately to the same queue. We have one (outgoing) external stream
associated with each other queue; such a stream is comprised of all transitions that send a job to
the associated queue. Now for each queue i we maintain a next internal transition time Ii, and
two next outgoing external transition times Eij, and Eik, j, k 5 i. The queue's next transition

time is the minimum, ti = min{Ii, Eij, Eikl. This is simply another application of the "competing
processes" interpretation of a transition. When queue i is chosen for the next transition, then
the event is taken from the stream whose next transition time is ti. After simulating that event
so that the queue enters state s', new next transition times are chosen for all streams associated
with the queue. The reason for changing every stream's next transition time is apparent from the

rates of these streams' holding times. The holding time rate for the internal process from state
Si = (Ni, Fi,Si) is

Al(si) = A + (pd + (I - pt)p,) (t/f Fi + ±isSi), (l)

while the holding time rate for either external process is

AEý(si) = 0.5(1 - p,l)(lI - p,) (pfFi + ipsS'i). (2)

Equation I reflects anrivals to queue i (at rate A), and service completions that either depart t he

system or are route(] back to queue i. (Note that the total rate at which jobs in qmmilue i are

receiving service is (if 1 Fi +±ISi), a fraction pd of which depart the system and a fraction (I - P,I)Pr
of which are routed back to queue i.) Both of these rates depend on the state of the queue; any
event at that queue may change its state, andl hence change the correct distribution for tIie next

event on each stream. New niext transition times are computed by sampling from the new holding
time distribution, and adding to the time of the event, ti. If an external event is chosen, then
new holding times must also be chosen in like fashion for all streams of the queue receiving the
departing job.

Note that the transition rates above depend only on the number of fast and slow jobs in service.
As such, these rates are independent of the queueing discipline, whose effect is manifested in the
definition of the state transformation upon a job departure or arrival. A key point is that the
transition rates are independent of the queueing discipline. This is important to remember, as it
will imply that our synchronization algorithm is independent of the queueing discipline.

The problem remains that the instants when jobs leave one queue for another are erratic and
unpredictable. We approach the problem by uniformizing every external event stream. Why?
Because the holding time distribution of an external event stream then remains completely in-
dependent of any state changes that may occur at the queue. We can completely presample the
holding times of all uniformized external event streams. Embedded in these transition times are
real ones, where jobs move between queues. We do not know which of these transitions will actually
move jobs and will not know until the simulation is actually performed, the queue states are actu-
ally known, and the real/pseudo decision thresholds are actually computable. The beauty of the
method is that the queues can generate and exchange their external transition times, and then use
these times as synchronization points, a.k.a. "appointments" [8]. Queue ! presamples the potential
transition times for its external event streams to queue 2 and queue 3. These potential times are
sampled from Poisson processes whose rates, A12 and A13 are at least as large as the maximum
possible instantaneous rates at which queue I can send jobs to queue 2 and queue 3. For example,
A1 2 = 0.5(1 - Pd)(1 - pr)Klti, which represents the rate at which jobs flow from queue I to queue
2 when all K servers on queue I are busy serving in the fast phase. By Equation 2, A E(s,) < A12

for all possible states si. After queue 1 presamples these potential external transition times, it
sends those lists to queue 2 and queue 3. Each queue i receives from every other queue j lists of
times at which a job might be sent from j to i. These lists are merged with queue i's own lists of
times when it may send jobs to other queues. The 71h entry in the merged list for queue i is of the
form (Ti(n),Ci(n)), where Ti(n) is the time of the n71h event and Ci(n) is the type of the 71"' event.
i.e., Ci((n) = (i,j) or (j,i), depending on whether the potential job goes from i to j or vice versa.
Having done so, each queue now knows each and every time at which some other queue may affect
it, and at which it may affect some other queue. Without uniformization the synchronization times
are unpredictable; with uniformization they are completely pre-determined in advance of actually
running the simulation.

As we simulate in parallel, each processor will execute asynchronously of the others, except
for synchronization at the pre-arranged instants in time. For example, suppose that tile state of
queue i is si, that the last event at queue i oc(urred at time ti, and that Ti(11) is the time of the
next (potential) external event. An exponential holding time Ei with mean l/Af(si) is generatedl.
If ti + Ei < Ti(n), then the next event to occur on queue i is an internal event. In this case.
among all possible internal transitions, queue i chooses one with probabilitv proportional to its

transition rate, simulates it, and updates its clock to time ti + Ei. If ti + E, >_ Ti(n), then the

next event to occur at queue i is an external event. Suppose that Ci(n) = (i,j). Then queue i

decides whether the transition is pseudo or real by computing the ratio r = Ag(si)/Aij (the ratio of

the stream's current actual rate to the stream's uniformized rate), opting for a real transition if a

uniform U(O, 1) random variable is less than or equal to r. In this case queue i selects a job whose

service completes, selecting any particular job with probability proportional to the rate at which

that job is departing for queue j (0.5ys or 0.5juf, depending on whether the job is fast or slow).

Queue i sends a message to queue j specifying the job transfer and continues. If C'4(n) is judged to

be a pseudo (with probability 1 - r), then queue i sends a message to queue j reporting this fact.

Alternatively, if CQ(n) = (j, i), then queue i waits for the message from queue j. If queue j reports

a job arrival, then queue i simulates the arrival. If queue j reports a pseudo then the event does

not affect queue i's state. Following simulation of CQ(n), queue i advances its clock to time Ti(n).

A new holding time for the internal process is selected, and the process continues.

Observe that the description above serves to describe a general algorithm, if we merely replace

the word "queue" with "LP". Also observe that it is possible to define windows [t, t+A] in simulation

time. One generates and exchanges all uniformized external events that fall within the window,

simulates the system behavior through that period, then advances to the next window [t+A, t+2A].

The only limitation on the window size A is the memory storage necessary to hold the external

transition times.

Calculation of uniformization rates is always application dependent. Among all features of the

algorithm, this is one of the issues demanding the most attention by the modeler to the synchro-

nization algorithm. (The other major such issue is decomposing event streams into internal and

external streams.) It is possible, for example, for LPs to be defined so that jobs from an infinite

server queue are routed to different LPs. One can't bound the transition rate of such an external

stream, at least not in an open system. The method works best when every stream's uniformization

rate is very close to its actual job transfer rate, i.e., when most external events are real. However,

this may not always be the case. Pseudo transitions are the single most deleterious artifact of the

algorithm, because time spent generating, communicating, and synchronizing upon pseudos is time

spent on activity not found in an optimized serial implementation. All of our PUCS variations

were developed to reduce or eliminate sources of pseudo transitions, or to minimize their effect on

performance.

Not all CTMCs are suitable for parallel simulation using PUCS. A key requirement is that one

be able to partition the CTMC into loosely synchronous interacting subchains. Such partitioning

follows intuitively when the CTMC has a basis in a physical domain, because partitioning the

domain often has the desired effect. Nevertheless, the issue of defining suitable LPs automatically

is one that we have not yet addressed.

The details above may seem complex, especially to those with little experience dealing with

CTMC models. However, there is strong reason to believe that PUCS-style synchronization can

be embedded in a parallel simulation package specific to an application class (e.g., a large subset

of RESQ [3] for simulating queueing networks), with all the details of finding legal uniformization

6

rates being automated.
In the course of experimenting with PUCS we encountered several implementation issues. One

of these concerns external stream list management. On the one hand we can faithfully implement
PUCS as described above. On the other hand, we can avoid list transmission altogether, by having
both ends of an external stream maintain a synchronized random number generator, so that LP

i computes the time of the next LP j --+ LP i synchronization, rather than receives it. Another
issue is the degree of aggregation one ought to employ when defining LPs. It is possible for the

entire submodel assigned to a processor to be considered as a single LP. It is also possible to break
up the model into more natural LPs, and treat the workload on a processor as a collection of

distinct LPs. Yet another issue is whether to exploit optimism. The uniformization framework
offers some unique optimizations for optimistic processing. Are they worth it? A final issue is
that of adaptivity in uniformization rates. What can you do when a mathematically correct upper
bound is either impossible or so large that almost all external transitions end up being pseudos?

Our various implementations, to be described next, explore issues.

3 Methods

We describe five different methods based on uniformization, and give the rationale for each.

3.1 Conservative Aggregated PUCS

CA-PUCS (identified simply as PUCS in [5, 9, 10]) was one of the first methods we developed.
In implementation it is almost identical to the description given in the last section. It has the

additional characteristics that the entire submodel assigned to a processor is considered to be one
LP, and that synchronization lists are generated and simulated on a window-by-window basis. The

latter feature is needed for the simple reason that computers' memories can retain only a finite

number of external transition descriptions, and very long runs will require very long transition

lists.
The rationale for aggregating all co-assigned workload into one LP is two-fold. First, a one-

LP-per-processor implementation is much easier to develop than one that allows multiple LPs.
The architecture used in our studies-the Intel family of multiprocessors-supports interprocessor

communication via explicit sends and receives. Receives may be either asynchronous (post a receive
and periodically check on whether the anticipated message arrived yet) or synchronous (block until

the anticipated message arrives). Furthermore, the Intel iPSC/860 and Touchstone Delta operating
system, NX, supports only one process per processor. Any multitasking-like switching between

LPs-has to be done at the application layer. By aggregating all of a processor's workload into one
LP we avoid scheduling issues; ",rthermore, there is no need to buffer incoming communication at

the application layer. When the processor expects message m at time t from processor j, it simply
does a synchronous receive until that message materializes. One cannot use synchronous receives
if switching between LPs is necessary. Secondly, massive aggregation avoids internal pseudo events

7

that may occur when multiple LPs are assigned to one processor. The problem here is that if
uniformization is applied at the LP level, then two LPs on the same processor synchronize with
each other just as though they were assigned to separate processors. We surely can develop the
code so that the communication between co-resident LPs is cheap, but we cannot easily avoid the
overhead of generating, communicating, and synchronizing upon a pseudo event. An important

rationale for massive aggregation is to eliminate the possibility of internal uniformization.

3.2 Conservative Partitioned PUCS

The other side of the aggregation issue is that massive aggregation can cause artificial blocking.
Events on a processor under CA-PUCS are executed in increasing monotonic order. If any piece of
a processor's submodel needs a message at time t and if that message is not yet present, the entire
processor blocks. However, it may be that another piece of the submodel is free to continue past
time t. To block at time t is to cheat oneself of some potential parallelism.

CP-PUCS (identified as PUCSThreads in [9]) allows multiple LPs per processor, and also strives
to reduce the communication overhead of list generation. The principle features of the method are

"* LP independence: A processor may manage any number of distinct LPs. In addition, by
appropriate assignment of random number generator seeds, the sample path that is executed
can be made independent of the way in which LPs are assigned to processors.

" Scheduling: At any time, each LP is classified as being ready or blocked, depending on
whether it is free to execute or is waiting for an incoming message. Scheduling consists of
selecting the ready LP with least time-stamp, performing a communication (either a send or
a receive) and simulating until it reaches its next communication instant. If an LP blocks
waiting for a message, a description of that message is stored in a binary search tree. Between
LP activations we probe for any newly received messages, accepting all such and storing them
in the application space. As each new message is processed we examine the search tree to see
if some LP is blocked on this message. If so, the LP is unblocked and placed on the list of

ready LPs.

" List Generation: Every pair of LPs i and j maintain a synchronized random number
generator. This means that LP i can compute for itself the same transition times that j
computes for the LP j to LP i external stream. While each LP now executes more work by
duplicating the generation of external stream transition times, we avoid having to commu-
nicate and merge the lists. There is an additional advantage in that no window is needed
now to limit the memory usage of external transition times. We simply generate the "next"
transition time for a stream when it is needed.

Somewhat to our surprise, our previous empirical studies found no real benefit of ('P-PU(CS over
(CA-PUCS. Those studies examined situations in which the deleterious effect of internal I)psVI(uos

is the dominant bottleneck to achieving good performance, and thus the benefit of avoiding theii
outweighed the benefit of more parallelism. However, as we will see, data in the present paper

shows that this is not always the case and there are situations in which ('P-PUCS outperforms
CA-PU(CS. We will comment more on this in Section 4.

3.3 Optimistic PUCS

Opt-PUCS (identified in [9] as OptAll) endows CP-PUCS with optimism. This comes into play
when an LP reaches an incoming communication instant, and the message it is to receive is not
yet present. The LP can optimistically assume that the message will report a pseudo transition.
and hence there is no need to wait for it. When the message does finally arrive, if the receiving
LP's guess was correct, then there is no need to roll back. This is an application of the idea of
"lazy reevaluation" explored first in [13]. Otherwise, as with standard optimistic algorithms such
as Time Warp[6], the receiving LP is rolled back to the time of the late message.

PUCS' general framework makes possible some unique optimizations.

" State Certainty: In a general purpose optimistic environment, one can never be certain
whether the next event processed will end up being committed, or will be discarded as a

result of rollback. In Opt-PUCS an LP can sometimes know that its state is sure, that it
will not be rolled back past its present point. The key to this determination is that we know

all instants in simulation time where messages may arrive. If LP i knows it will not receive
any message between times s and t, and it knows that its present state is sure (all LPs are
initialy sure), then its state remains sure while processing all internal events up to time
t. Furthermore, if LP j sends the message at t and was also sure at the time the message
was sent, then the message may be received and LP i remains sure. However, if either LP

j was unsure at time t, or if the LP i decides to optimistically bypass that communication,
then LP i becomes unsure. In [9] we show how every LP can maintain a Least Sure Time

(LST) that describes the last instant in simulation time when the LP was sure. By simply
appending sure/unsure tags to messages and analyzing these, every LP's LST advances
without extra calculation. Since we may release any state saved at a time less than the LST,
the LST calculation gives us the benefits of the usual GVT (Global Virtual Time-see [6])
calculation, without the additional overhead of actually performing a GVT calculation.

"* State-Saving: Optimi tic simulations generally save state prior to every event, because as
far as the LP knows, the simulation can in theory be rolled back to any point in simulation

time ahead of the last known GVT. Within the PUCS framework, a rollback can occur only

at some communication instant, hence there is no advantage to saving state before an internal
event. The only time state must be saved is at a communication instant, and then only if the
receiving LP is either unsure or becomes unsure by either receiving an unsure message or

by optimistically bypassing it.

" Scheduling: Our ability to ascertain whether an LP's state is sure permits smarter schedul-
ing than is usually possible undler Time Warp because we may give highest priority to an LP
with some work to do that we know is sure, and cannot be rolled back. In fact. our studies

9

in [9] found that a very effective scheduling strategy is one that is averse to state-saving, as
follows. An LP's execution slice is delimited at eithe, end by external communications (either
incoming or outgoing); the execution slice begins by performing a communication, then all
internal work up to (but not including) the next communication is performed. Whether or not
we perform a state-save at the initial communication depends on the present sure/unsure
state of the LP, whether the communication is outgoing or incoming, and whether an commui-
nication is present or unsure. We define four scheduling classes, listed below ill decreasing
order of priority.

1. sure LPs that will not save state because the first communication is either an incoming
message from a sure LP, or is an outgoirg message.

2. unsure LPs whose first communication is either an incoming message from a sure LP,
or is an outgoing message.

3. sure LPs that must save state on the first communication, because that communication
(necessarily incoming) is either not yet present, or was sent by an unsure LP.

4. unsure LPs that must save state on the first communication, because that communica-
tion (necessarily incoming) is either not yet present, or was sent by an unsure LP.

One of our aspirations for Opt-PUCS was that it would reduce the cost of pseudo transitions.
While pseudos would still appear logically in the external event streams, the hope was that not
having to communicate them from unsure LPs would lead to some savings. Our initial experiments
showed that this intuition held true, provided that the fraction of pseudo events was very high. For
lessor fractions of pseudos, the overheads of optimism largely cancelled the benefits of optimism.
This observation is also borne out in the new data we present in this paper. One should also bear
in mind that the version we study in this paper is highly optimized. Our previous study suggested
that its performance is as large as a factor of 2 better than standard Time-Warp style algorithms.

3.4 Adaptive PUCS

We developed ACA-PUCS and ACP-PUCS in an effort to deal directly with the problem of excessive
pseudo events. The idea is to observe the behavior of an external stream, and uniformize it at a
rate slightly larger than the maximum rate it seems to achieve and repeat. There are two basic
issues that must be addressed. One is the selection of uniformization rate, and the other is dealing
with situations where the assumed upper bound on the external stream's transition rate actually

becomes less than the actual transition rate--an occurrence we call a rate fault.
To uniformize a stream at a rate which is not provably an upper bound on it- tiansition rate

is to execute optimistically. Some provision must then be made to recover from faults suffered
when optimistically made assumptions are violated. Our earlier experience with other versions of
PUCS suggested that CA-PUCS was an appropriate point of departure, as it consistently achieved
better performance (on the problems studied) when the fraction of pseudo events was low. The
simplest way to incorporate optimism in CA-PUCS is to checkpoint the entire simulation state at

10

the beginning of every window, continuously monitor each external stream for rate faults, and at
the end of a window determine w! ether any LP suffered a rate fault at any point in the window.
If a rate fault is encountered the entire window is resimulated by all LPs. In order to correctly
resimulate the window, exactly the same sequence of events must be performed up to the time of
the earliest rate fault, say t. The uniformization rate of the faulting stream is increased just prior

to time t to a level that will carry it passed the observed rate fault. The process of resimulatiimg a
window is repeated until we get through the window without any faults, at which point we advance
to the next window. The net effect is that the uniformization rate for an external stream over a
window is a piece-wise constant function of simulation time, with jumps occurring at instants when

rate faults are observed on that stream.

We use a two-stage policy for determining a stream's initial uniformization rate, at the beginning
of a window. During the first phase we monitor the stream's transition rate, and record the largest
rate ever seen. While in the first phase. the initial uniformization rate given to the stream at
the beginning of a window is twice the naximum rate seen so far. The second phase begins after
the monitored ,naximum rate remains un(hanged for a long time (more precisely, after the last
consecutive 99% of the stream's transitions have past without a change). The stream then "locks
in" on twice this maximum, uniformizing all subsequent windows at that rate. There is a provision
to increase the lock-in rate, provided the fraction of windows that rate fault rises above 5%. The
philosophy of this mechanism is to observe the stream's behavior for a long enough period of time
so that the highest transition rate it is likely to see and return to is observed. We uniformize at
twice this rate as a means of insurance. Once in the second phase, rare surges of the transition rate
past the uniformized rate are accommodated via rate-faults and resimulation, but the default rate
remains unaltered because the probability of exceeding that rate is very low.

Experiments with ACA-PUCS (reported in [10]) showed that it could indeed accommodate
situations where non-adaptive PUCS failed. In the next cection we present data that also shows

this advantage. To complete our comparison of the influences that aggregation and adaptivity
have on performance, we recently developed ACP-PUCS-an adaptive version of CP-PUCS. ACP-
PUCS retains all the features of CP-PUCS; in addition, it handles adaptive uniformization in the
same fashion as does ACA-PUCS. Windows are defined solely for the purpose of checking for and
recovering from rate-faults. Prior to the adaptive mechanism locking on, the initiating end of a
stream notifies the receiving end of the initial uniformization rate for the window. However, if

that rate does not change between windows, then no such communication is needed. Consequently,
once all the streams have locked in on their effective uniformization rate, the additional overhead

associated with a window becomes negligible.
A final advantage of adaptivity is that it relcasrs the simulation modeler from the burden of

haying to determine uniformization rates. For this reason adaptive methods seem to offer the most

hope for automating the parallelization of a CTMC simulation.

II

4 Experiments

In this section we present the results of experiments performed on the Intel Touchstone Delta
multiprocessor[7], using 16, 64 and 256 processors. The Delta is an MIMD architecture based oil

the Intel i860 processor chip. Its processors are connected in a mesh network. Communication is

based oln circuit switched message passiig.
The simulation model we study is that of a fully connected network of central server queueing

clusters [1]. A single central server is illustrated in Figure 1. A job entering the cluster always
visits the CPU queue first. After receiving service there, the job is routed to one of twenty I/O
servers, chosen uniformly at random. Upon entering service, the job chooses a "fast" service rate

of lf with probability pf; it otherwise acquires "slow" service rate of 1. The job receives an

exponentially distributed amount of service, with mean 1//if or mean 1, depending on whether the

job is fast or slow. Upon its service completion the job returns to the CPU server with probability

Pc. Otherwise, some other central server cluster is chosen uniformly at random, and the job is
routed to that cluster's CPU queue. Throughout our study of PUCS we have used this model, or

another one related to it (where multiple local clusters are attached to each central server). Even

though the model is too simple in and of itself to warrant treatment by parallel simulation, we

use it because it is capable of parametrically representing more complex models. For example, the

model parameter Pc can be used to adjust the computation/communication ratio. The performance
of the synchronization protocol is largely independent of the specifics of the simulation workload.

However, the frequency with which the model communicates and synchronizes obviously affects

performance, and p, is a simple parametric means of varying workload intensity. Similarly, the

number of jobs circulating in the system is another parameter that affects the workload intensity.
We can control the level of uniformization by adjusting jf--the higher it becomes, the faster the

uniformization rates on external streams.

Our study sets p, = 0.99. This implies a healthy computation/communication ratio proportional

to 200 (an average of 100 visits to the CPU and some I/O device before exiting the cluster) --

but only in an "optimal" parallel simulation whose only communication costs are those of moving

jobs. The actual ratio will be degraded from this level by uniformization. Because of the relatively

high cost of message-passing, any application running on a machine such as the Delta must have

a respectable computation/communication ratio to achieve respectable speedups. We also fix the

probability of a fast job (pf) to be 0.01. This selection places stress on our algorithms, because

strict uniformization rates must assume that every server is always busy with a fast job, when in
fact, fast jobs rarely appear. Our study fixes the number of central server clusters at 256. This

selection gives us a moderately large simulation model, and also enables us to examine the effects
of managing many LPs (up to 16) on a processor. Finally, we set the CPU service rate to 20. and

the slow I/O job rate at I. This ensures that in steady-state the distribution of jobs will be more

or less uniform among all queues.
The parameters we vary are

* Number of jobs: We examine lightly loaded s,,,narios, where there are 10 jobs per cluster

12

PC

0 to other central
from other central server clusters

server clusters CPU queue

1/O queues

Figure 1: Central server model. pc is the probability that a job departing an I/O device will return
to the CPU queue.

(about 0.5 jobs/queue), and heavily loaded scenarios where there are 1000 jobs per cluster
(about 50 jobs/queue).

" pf: We examine a fast job rate of 1 (so there is no distinction between fast and slow jobs),
and a fast job rate of 8. The latter selection, coupled with with pf = 0.01, induces high rates
of uniformization relative to actual stream transition rates.

"* Number of processors: We study our models on 4 x 4, 8 x 8, and 16 x 16 submeshes of

the Delta.

Every experiment was run long enough so that every processor executes approximately 0.5
million events. Our primary metric of interest is the event execution rate, which measures the rate
at which useful events are executed (per second). We specifically exclude from this rate pseudo
events and optimistically executed events that are later rolled back. The rates we present are from
single runs; this is justified, as in our experience there is very little variation (perhaps 1%) in these

execution rates between runs of the same model.

While simple, the model we study presents a challenge to any performance oriented study,
especially of a conservative synchronization algorithm. There is virtually no locality; a cluster is no
more likely to communicate with a co-resident one than it is to communicate with an off-processor
one. Every cluster communicates with every other cluster-there are approximately 21" distinct
communication paths to manage! Using P processors, every time a communication occurs there is
a (P - 1)/P% chance that the communication is between different processors. Furthermore, the
model uniformization is consistent with a queueing policy where newly arriving fast jobs to preempt
slow jobs. The only benign assumption made is that p, = 0.99, an assumption needed to ensure

13

a sufficient computation/communication ratio. Finally, the maximal processor size, P -- 256, is

significantly larger than that used in most studies, and may be as large as any previous study

using MIMD processors. The fact that we do achieve significant performance over optimized serial

execution on a difficult problem proves the validity of our methods.

Before analyzing the results of our experiments, we address the issue of "speedup". Speedup

is intended to measure the user's benefit of running the parallel algorithm. For this reason, one

ought to compare parallel performance to that of an optimized serial algorithm. Some difficulties

arise, however, when the serial algorithm which is optimal changes as the problem parameters of

interest change. To illustrate the point, Table 1 below gives serial execution rates as a function

of problem characteristics, for an optimized serial direct Markovian simulation, and CP-PUCS run

on one processor. While PUCS on one processor is faster by almost 20% on one set of parameters,

(load,/i) Optimized Serial PUCS on

Algorithm One Processor

(Light,l) 6211 7014

(heavy,1) 6563 7706

(light,8) 6219 4166

(heavy,8) 6554 6469

Table 1: Execution rates (events/sec) of the optimized serial algorithm and PUCS running on one

processor.

it is slower by 33% on another. By comparison, the optimized serial algorithm varies by only a

few percent over these problems. A user is far more likely to choose a serial algorithm that is

consistently good over one whose performance varies so widely.

Table 2 presents the results of our experiments. Without resorting to a definition of speedup,

we can say that on the heavily loaded problem with uf! = I using 256 processors, CP-PUCS is

260 times faster than the particular serial simulator we used, and is 221 times faster than its

own one processor implementation (and 14 times faster than its 16 processor implementation). In

either case, it is clear that a very substantial improvement over serial execution is being achieved.

As an additional point of comparison, we measured the execution rate of the commercial queueing

network simulator RESQ [3], executing on an IBM 3090 mainframe. The model simulated by RESQ

is actually substantially smaller than this one. '-aving only 16 clusters. The RESQ execution rate

is only 1,781 events/sec. Of course, one must t-. ý into account that RESQ is an industrial quality

simulator able to handle a wide range of problems, whereas the PUCS code is handcrafted and

optimized, with a much more restrictive domain. Nevertheless, this comparison illustrates parallel

simulation's tremendous potential for accelerating solution times.

We next analyze this data with an eye towards addressing the issues of aggregation, communi-

cation costs, optimism, and adaptiveness.

14

16 Processors 64 Processors 256 Processors

light heavy I light heavy light heavy

Fast Job Rate = I

CA-PUCS 80,032 102,504 301,765 411,362 985,327 1,575,146

CP-PUCS 109,585 122,186 378,329 393,418 1,043,609 1,709,567

Opt-PUCS 103,707 121,609 343,510 353,873 874,617 855,737

ACA-PUCS 79,711 102,329 311,168 403,380 989,351 1,567,038

ACP-PUCS 78,942 100,877 256,138 327,559 808,621 1,357,975

Fast Job Rate = 8

CA-PUCS 53,339 76,580 181,785 299,660 668,323 1,147,282

CP-PUCS 58,753 90,708 202,205 311,920 457,252 934,120

Opt-PUCS 57,314 89,642 167,382 328,711 445,880 802,732

ACA-PUCS 74,580 90,857 258,018 352,763 851,204 1,304,502

ACP-PUCS 63,738 88,156 203,168 282,835 547,770 926,403

Table 2: Execution rates (events/sec) of fully connected model of 256 central server clusters with

Pc = 0.99, P1 = 0.01. Fast job service rate is varied between I and 8; average number number of

jobs per cluster is varied from 10 (light) to 1000 (heavy). Simulation is executed on 16, 64, and

256 processors of the Intel Touchstone Delta.

4.1 CP-PUCS vs CA-PUCS

Our earlier studies of CA-PUCS and CP-PUCS (on an Intel iPSC/2) indicated that the CP-

PUCS overheads of managing multiple LPs and of internal pseudos between on-processor clusters

outweighed the advantages of increased opportunity for parallelism and avoidance of synchronous

appointment generation. Yet the data in the present study shows that this is not always true.

Consider Table 3 which gives the ratio of CP-PUCS rates to CA-PUCS rates, as a function of

problem characteristics and architecture size.

The overall trend is for CP-PUCS to outperform CA-PUCS, but there are still instances where

the reverse is true.

(load,p.) 16 Processors 64 Processors 256 Processors

(light,I) 1.37 1.25 1.05

(heavy,1) 1.19 0.95 1.08

(light,8) 1.10 1.11 0.68

(heavy,8) 1.18 1.35 0.81

Table 3: Ratio of CP-PUC(S/CA-PUCS execution rates.

15

CP-PUC'S and CA-PUCS (liffer both with respect to aggregation, and with respect to message
handling. As such, it is difficult to separate the influences of aggregation and communication costs.
Furthermore, the communication costs will depend on the underlying architecture. as well as the
operating system. There are at least four factors to take into consideration, which sometimes
interact in a complex manner.

" An LP's execution time-slice is delimited by communication instants. When Ij = 8 the
uniformnization rate is eight times larger, so that there are eight times as many communication
instants per unit time. An LP's execution time-slice is much shorter, so that the overhead of
switching between LPs is suffered eight times as often.

" In the lightly loaded experiments (and those where pf = 8), most communications report

pseudo events. Thus, when CA-PUCS blocks, it uually waits for a communication that
doesn't affect its state. There is thus no useful purpose gained by blocking, other than the
assurance of logical correctness. CP-PUCS is better able to find and execute useful work.
when such work exists.

" As we increase the number of processors we decrease the number of clusters on a processor.
This increasingly limits CP-PUCS' ability to find useful work that CA-PUCS cannot find. Of
course, at 256 processors, both CP-PUCS and CA-PUCS each have one cluster per processor,

and thus behave identically with respect to synchronization.

" CA-PUCS has a global step where synchronization appointments are generated and ex-
changed. Its performance will thus be affected by the efficiency with which an all-to-all
exchange can be performed, and by the frequency of this exchange. CP-PUCS has no corre-

sponding cost.

Let us examine performance with these factors in mind. On these experiments CP-PUCS tends
to perform better. Apparently, on this model, the scheduling and appointment generation advan-
tages outweigh CA-PUCS advantages. The difference between the two tends to diminish as the
number of processors increases, which is consistent with the fact that (i) the CP-PUCS scheduling

advantage gets smaller as a processor has fewer and fewer clusters, and (ii) in a CA-PU('S ap-
pointments exchange, essentially the same communication workload is spread over more network
hardware, reducing the frequency of collisions and blocking. Thus, as the number of processors in-
creases the CA-PUCS advantage diminishes and the CP-PUCS disadvantage diminishes. However,
there are clearly other factors at work, as the performance differences change neither smoothly nor

monotonically as the number of processors increase.
Our earlier comparison of CP-PUCS and CA-PUCS found CA-PUCS to be clearly superior.

One explanation is that the models studied are different in an important way. The earlier model
appends 10 "local clusters" of queues to every central server queue. In those stIudies, P, = 0.0, and
a job leaving an I/O device can be routed either to another central server cluster (with probability

p,,) or to one of its local clusters. Upon leaving the local cluster the job returns to the same

16

(loadt/)If 16 Processors 64 Processors 256 Processors

(light, 1) 1.05 1.10 1.19
(heavy,1) 1.00 1.10 1.99
(light,8) 1.02 1.20 1.02
(heavy,8) 1.01 0.90 1.16

Table 4: Ratio of CP-PUCS/Opt-PUCS execution rates.

central server. This model provides another way of boosting the coznputation/coinunnication

ratio, because a local cluster is always mapped to the same processor as its parent central server

cluster. Our previous study varied the probability p,. of routing a job from one central server to

another one, on a different processor. As p,., increases, CP-PUCS perforlnance drops faster than
that of CA-PUCS, because CP-PUCS suffers increasingly from internal pseudo transitions between

a central server and its local clusters. The present set of experiments are somewhat kinder to

CP-PUCS, as the level of interaction between co-resident LPs is much lower. It seems then that
the level of internal uniformization is the deciding factor between CA-PUCS and (P-PUCS. This

implies that close attention must be paid when partitioning a simulation model into LPs for PU('S.
perhaps deciding which style of synchronization to use as a function of uniformization rates.

4.2 Whither Optimism?

These experiments offer clear insight into the potential of exploiting optinisin in PU('S. because
the only substantive difference between CP-PUCS and Opt-PUCS is the optimistic processing.

Towards this end, Table 4 com')utes the ratio of CP-PUCS to Opt-PUCS execution rates.
The first thing we notice is that CP-PUCS tends to do a little better than Opt-PU('S. Next

we notice is that the degree to which CP-PUCS does better tends to increase as the number of

processors increases. Indeed, for all practical purposes the performance on 16 processors is identical:

yet at 256 processors, in one case CP-PUCS was nearly twice as fast as Opt-PUUCS.

Explanations for this behavior are found by looking at the costs suffered by executing optinisti-

cally, primarily event re-execution and state-saving. Table 5 computes the ratio of the number of
total events (excluding pseudos) executed to the number of events (excluding t)seudos) committed.

One can also view this as the average number of times a non-pseudo event is executed. The table

also computes the average number of state-saves per committed non-pseudo event.

One thing clearly shown is that, in this example, the cost of saving the state of one cenlral

server cluster (about 3000 bytes) is usually amortized over many events. Its effect on performaim'e

must be negligible. Any significant differences between ('P-PU(CS and Opt-PUC('S are relattIed It)
the cost of rolling back an(l re-executing events. Indeed, there is a direct correlation betwven high
event execution ratios and significant gaps between CIP-PU('S and Opt-PIT('S.

Since re-execution costs define the difference between ('P-PU('S and Opt- 'i ('S, it ik p le

17

Total/Committed Events Average State Saves/Event
(loadqi) 16 64 256 16 64 256

Processors Processors Processors Processors Processors Processors

(light,l) 1.11 1.19 1.68 0.008 0.010 0.027
(heavy,l) 1.03 1.40 2.10 0.001 0.002 0.007

(light,8) 1.01 1.06 1.34 0.060 0.100 0.017

(heavy,8) 1.01 1.04 1.27 0.004 0.015 0.041

Table 5: Overheads associated with Opt-PUCS.

to explain why the gap between them increases as the number of processors increases. On only 16
processors, many LPs are assigned are assigned to the same processor, and thus Opt-PUCS has a

good chance of being able to schedule a sure cluster. However, for a large number of processors there

are relatively few LPs on a processor. Without a large number of LPs, a processor quickly executes
its sure workload and is left to forge ahead optimistically. Apparently its optimism is frequently

misplaced, and significant fractions of events end up being resimulated. This effect is somewhat
lessened when there are many pseudo events, since in such cases the optimistic assumption that

the event is a pseudo event is in fact correct.

4.3 Adaptivity

Pseudo-events are the largest source of performance degradation in all versions of PUCS. Many

CTMC models have characteristics that cause the best upper bound on an external event stream's
transition rate to be very far from the stream's average transition rate. In our experiments fast

jobs appear infrequently, and one almost never sees more than 3 simultaneous fast jobs in a central
server cluster. Yet the uniformization bound must be based on the assumption that all servers are

busy with fast jobs.

Table 6 illustrates the sensitivity of each method to increased uniformization, by computing
the ratio of its execution rate using Pf = I to its rate using pf = 8. This data shows clearly

that ACA-PUCS and ACP-PUCS are more tolerant of increased uniformization than are the other

methods (with the exception of ACP-PUCS using 256 processors). Similar observations held in
our previous study of ACA-PUCS that varied pif more widely, up to [i = 1024. Eveli at levels of
p/ = 256, ACA-PUCS gives respectable performance while CA-PUCS performance has thoroughly

degenerated. We believe that any standardized version of PUCS must include adaptivity if it is to
work on a wide range of problems.

The relatively weak performance of ACP-PUCS surprised us, as we expected it to gain the
advantages of both scheduling flexibility, and adaptivity. We have reason to believe that its failure

to do so rests somehow with the Delta architecture and NX operating system, because these expec-
tations are m,'et using the Intel iPSC/2. Execution rates taken from a 16 processor configuration

18

Light Load Heavy Load

Algorithm 16 64 256 16 64 256
Processors Processors Processors Processors Processors Processors

CA-PUCS 1.50 1.66 1.47 1.34 1.37 1.37
CP-PUC S 1.86 1.87 2.28 1.34 1.25 1.8:3
Opt-PUCS 1.80 2.05 1.96 1.35 1.07 1.06

ACA-PUCS 1.07 1.20 1.16 1.12 1.14 1.20
ACP-PUCS 1.23 1.14 1.26 1.16 1.47 1.46

Table 6: Ratio of u- = 1 to = 8 execution rates.

light heavy light heavy

Fast Job Rate= I Fast Job Rate = 8
CA-PUCS 10,637 13,431 7,788 11,216

CP-PUCS 13,149 15,329 9,258 13,224
ACA-PUCS 10,679 13,212 8,118 10,553

ACP-PUCS 12,975 15,148 11,276 13,935

Table 7: Execution rates on 16 processors of Intel iPSC/2

are given in Table 7. We see that when pf = 1 ACP-PUCS gets very nearly the performance of
CP-PUCS (whose performance is best), while ACA-PUCS does not do as well owing to its basis in
CA-PUCS. Then, when pf = 8, ACP-PUCS becomes the best method over all.

Regardless of whether ACP-PUCS meets our expectations or not, it is evident that adaptiveness
offers performance gains for Lf = 8, when the gap between the maximum and average external
transition rates increases.

5 Conclusions

This paper looked at the problem of parallelizing the simulation of continuous time Markov chains.
We showed how the notion of uniformization can be applied so that the Z;iuilatioit tan be con-
ducted by essentially pre-computing an inter-LP synchronization schedule, and then simulating a
mathematically correct sample path through that schedule. This basic method is called PU('S.
We described five different PUCS variations, and examine performance on a parameterized model
designed to illustrate their respective strengths and weaknesses. The experiments were con(lucted
on the Intel Touchstone Delta multiprocessor, using 16, 64 and 256 processors.

The results of these experiments, taken in conjunction with others previously conducted, sug-
gest that an optimized PUCS algorithm ought to incorporate conservative synchronization, and

19

adaptive uniformization rates. Issues of aggregation and communication seem to be dependent on

the simulation model, and underlying architecture and/or operating system. More work is needed

to fully understand the complex relationships between these factors. The performance we observe

can often be quite good, depending on the problem characteristics. However, PUICS performance

is inescapably dependent on the number of pseudo-events, and every effort must be made to reduce

these.

While our experiments prove the promise of PUCS, some important issues remain open. We

have not yet addressed automated partitioning, nor automated load balancing, nor the effect one

has on the other. We intend to investigate these issues.

Acknowledgements

This research was performed in part using the Intel Touchstone Delta System operated by Cal. Tech.

on behalf of the Concurrent Supercomputing Consortium. Access to this facility was provided by

the NASA Langley Research Center.

20

References

[1] J.P. Buzen, "Computational Algorithms for Closed Queueing Networks with Exponential

Servers," Commun. ACM, vol. 16, no. 9, pp. 527-531, September 1973.

[2] R.M. Fujimoto, "Parallel Discrete Event Simulation," Commun. ACM, vol. 33, no. 10, pp.
31-53, 1990.

[3] K.J. Gordon, R.F. Gordon, J.F. Kurose and E.A. MacNair. "An Extensible Visual Environment

for Construction and Analysis of Hierarchically-Structured Models of Resource Contention

Systems," Management Science, vol. 37, no. 6, pp. 714-732, June 1991.

[4] D Gross and D.R. Miller, "The Randomization Technique as a Modeling Too] and Solution

Procedure for Transient Markov Processes," Operations Research, vol. 32, no. 2, pp. 343-361,

March-April 1984.

[5] P. Heidelberger and D.M. Nicol, "Conservative Parallel Simulation of Continuous Time Markov

Chains Using Uniformization. IBM Research Report RC16780, Yorktown Heights, New York,

1991. To appear in IEEE Transactions on Parallel and Distributed Systems.

[6] D. R. Jefferson, "Virtual Time," ACM Trans. on Programming Languages and Systems, vol.

7, no. 3, pp. 404 - 425, July 1985.

[7] S.L. Lillevik, "The Touchstone 30 Gigaflop DELTA Prototype", Proceedings of the 1991 Dis-

tributed Memory Computer Conference, IEEE Press, pp. 671-677, April 1991.

[8] D.M. Nicol, "Parallel Discrete-Event Simulation of FCFS Stochastic Queueing Networks,"

Proceedings of the ACM/SIGPLAN PPEALS 1988. Parallel Programming: Experiences with

Applications, Languages and Systems. ACM Press, pp. 124-137, 1988.

[9] D.M. Nicol and P. Heidelberger, "Optimistic Parallel Simulation of Continuous Time Markov
Chains Using Uniformization", IBM Research Report RC17932, Yorktown Heights, New York,

1992. Submitted for publication.

[101 D.M. Nicol and P. Heidelberger, "Parallel Simulation of Markovian Queueing Networks Using

Adaptive Uniformization", IBM Research Report RC18403, Yorktown Heights, New York,

1992. Submitted for publication.

[11] R. Righter and J.V. Walrand, "Distributed Simulation of Discrete Event Systems," Proceedings

of the IEEE, vol. 77, no. 1, pp. 99-113, January 1989.

[12] S. Ross, "Stochastic Processes", John Wiley and Sons, New York, 1983.

[13] D. West, Lazy Rollback and Lazy Reevaluation, M.S. Thesis, University of Calgary, Jlanuary

1988.

21

REPORT DOC. "ENTA, T- 1N PAGE-1,,-,•,, _.__ _ _ _-__ _ _ _,,_PG E_,__ _ _ _..__ _ _ _ _---

, • • . ..

AGENCY USE ONLY 0 I . E R A" . REP3R TYPE ANO DATES COVERED

INovember 1992 Contractor Report
4. TITLE AND SuBTITLL 5 FUND!NG NUM5ERS

C NAS1-18605
PARALLEL ALGORITHMS FOR SIMULATING CONTINUOUS NASl-19480

TIME MARKOV CHAINS

6. AUTHOR'S, WU 505-90-52-01
David M. Nicol
Philip Heidelberger

,7 PERFORMING ORGANIZATION r.AM ES' AND ADDRESS(ESZ) L PER' D)RMiNC; ZRGANIZATION
Institute for Computer Applications in Science REPORT NUMBEK

and Engineering IICASE Report No. 92-60
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23681-0001

9. SPONSORING. MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING

National Aeronautics and Space Administration AGENCY REPORT NUMBER

Langley Research Center NASA CR-189729
Hampton, VA 23681-0001 1ICASE Report No. 92-60

11. SUPPLEMENTARY NOTES Submitted to the 7th Annual
Langley Technical Monitor: Michael F. Card Workshop on Parallel and Distri-
Final Report buted Simulation

12a. DISTRIBUTION, AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Unclassified - Unlimited

Subject Category 61

13. ABSTRACT (Maximum 200 words)

We have previously shown that the mathematical technique of uniformization can serve
as the basis of synchronization for the parallel simulation of continuous-time
Markov chains. This paper reviews the basic method and compares five different
methods based on uniformization, evaluating their strengths and weaknesses as a func-
tion of problem characteristics. The methods vary in their use of optimism, logical
aggregation, communication management, and adaptivity. Performance evaluation is
conducted on the Intel Touchstone Delta multiprocessor, using up to 256 processors.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Markov chains; parallel simulation; parallel algorithms; 16. 23
1.PRICE CODEqueueing networks A03

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

NSN 7540-0'-280-5500 Standard ;O'r' 298 fRPv 2 89)

NAYSA P OW'Is

